Curriculum Vitae James G. Heys

Department of Neurobiology and Anatomy University of Utah – School of Medicine 36. S. Wasatch Dr, 4547 Sorenson Molecular Biotechnology Building Salt Lake City, UT, 84122 (801) 587-8090, FAX: (801) 581-4233 Email: jim.heys@neuro.utah.edu

EDUCATION

Years	Degree	Institution (Area of Study)
2013 - 2018	Postdoctoral Fellow	Northwestern University (Neurobiology) Evanston, IL
2007 - 2013	Ph.D.	Boston University (Neuroscience) Boston, MA
1999 - 2004	B.A.	University of Wisconsin–Parkside (Economics) Kenosha, WI

UNIVERSITY OF UTAH ACADEMIC HISTORY

Neurobiology & Anatomy, 01/01/2019 - Present

HONORS & FELLOWSHIPS & GRANTS

2021 - 2026	NIH – DP2 – Director's New Innovator Award
2021 - 2023	Brain and Behavior Research Foundation – Young Investigator Award
2020 - 2023	Whitehall Foundation – Research Grant
2014 - 2018	Simons Foundation - Collaboration on the Global Brain - Postdoctoral Fellowship
2007 - 2008	National Institutes of Health Training Grant, Boston University, Boston, MA

RESEARCH EXPERIENCE

2013 - Present	Postdoctoral Research	
	Northwestern University, Evanston, IL	
	Laboratory of Dr. Daniel Dombeck	
	Project: Uncovering neural representations of time and space in medial entorhinal cortex through 2-photon calcium imaging	
2007 - 2013	Ph.D. Research	
	Boston University, Graduate Program in Neuroscience, Boston, MA	
	Laboratory of Dr. Michael Hasselmo	
	Project: Intrinsic cellular mechanisms underlying medial entorhinal cortex grid cell coding	
2005 - 2007	Research Assistant	
	University of Washington, Department of Psychology, Seattle, WA	
	Laboratory of Dr. Sheri Mizumori	
	Project: Neuronal representation of conditioned taste in the basolateral amygdala	

PEER-REVIEWED JOURNAL ARTICLES

- 1. Heys JG, Wu Z, Allegra Mascaro AL, Dombeck DA. Inactivation of the Medial Entorhinal Cortex Selectively Disrupts Learning of Interval Timing. Cell Report, 32(12):108163.
- 2. Heys JG, Dombeck DA (2018). Evidence for a subcircuit in medial entorhinal cortex representing elapsed time during immobility. Nature Neuroscience, 21(11), 1574-1582.
- 3. Heys JG, Shay CF, MacLeod KM, Witter MP, Moss CF, Hasselmo ME (2016). Physiological Properties of Neurons in Bat Entorhinal Cortex Exhibit an Inverse Gradient along the Dorsal-Ventral Axis Compared to Entorhinal Neurons in Rat. Journal of Neuroscience, 36(16), 4591-9.
- 4. Heys JG, Rangarajan KV, Dombeck DA (2014). The functional micro-organization of grid cells revealed by cellular-resolution imaging. Neuron, 84(5), 1079-90.
- 5. Heys JG, MacLeod KM, Moss CF, Hasselmo ME (2013). Bat and rat neurons differ in theta-frequency resonance despite similar coding of space. Science, 340(6130), 363-7.
- 6. Heys JG, Hasselmo ME (2012). Neuromodulation of I(h) in layer II medial entorhinal cortex stellate cells: a voltage-clamp study. Journal of Neuroscience, 32(26), 9066-72.
- 7. Heys JG, Giocomo LM, Hasselmo ME (2010). Cholinergic modulation of the resonance properties of stellate cells in layer II of medial entorhinal cortex. Journal of Neurophysiology, 104(1), 258-70.

REVIEW ARTICLES

- 1. Issa JB, Tocker G, Hasselmo ME, Hevs JG, Dombeck DA. (2020) Navigating Through Time: A Spatial Navigation Perspective on How the Brain May Encode Time. Annu Rev Neurosci. doi: 10.1146/annurev-neuro-101419-011117.
- 2. Barry C, Heys JG, Hasselmo ME (2012). Possible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells. [Review]. Front Neural Circuits, 6, 5.
- 3. Hevs JG, Schultheiss NW, Shav CF, Tsuno Y, Hasselmo ME (2012). Effects of acetylcholine on neuronal properties in entorhinal cortex. [Review]. Frontiers in Behavioral Neuroscience, 6, 32.
- 4. Hasselmo ME, Brandon MP, Yoshida M, Giocomo LM, Heys JG, Fransen E, Newman EL, Zilli EA (2009). A phase code for memory could arise from circuit mechanisms in entorhinal cortex. [Review]. Neural Networks, 22, (8), 1129-38.

<u>INVITED TALKS</u>	
2021	Heys JG. A distinct subcircuit in medial entorhinal cortex mediates
	learning of interval timing behavior during immobility, Timing
	Research Forum Seminar Series (virtual)
2020	Heys JG. Neural Mechanisms Underlying Interval Timing in Medial
	Entorhinal Cortex, 2 nd Conference of the Timing Research Forum,
	Queretaro, Mexico
2019	Heys JG. Specialized sub-circuits in medial entorhinal cortex encode
	elapsed time during immobility. Hippocampus Conference, Taormina,
	Italy
2019	Heys JG. Neural mechanism underlying temporal processing in the
	entorhinal cortex, Department of Biomedical Engineering, University
	of Utah, Salt Lake City, UT
2019	Heys JG. Neural representations of time and space underlying episodic
	memory. Biozentrum, University of Basel, Basel, Switzerland
2018	Heys JG. Distinct neural representations of time and space in medial
	entorhinal cortex. Simons Collaboration on the Global Brain NY Area
	Post-doc Meeting. New York, NY

2018	Heys JG . Neural representations of time and space underlying episodic memory. Department of Neurobiology, Duke University School of Medicine, Durham, NC
2018	Heys JG . Neural representations of time and space underlying episodic memory. Department of Neuroscience, Yale School of Medicine, New Haven, CT
2018	Heys JG . Neural representations of time and space underlying episodic memory. Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT
2018	Heys JG . Neural representations of time and space underlying episodic memory. Department of Psychological and Brain Sciences, Boston University, Boston, MA
2017	Heys JG . Distance Neural Representations of Time and Space in medial entorhinal cortex, Simons Collaboration of the Global Brain Annual Meeting, New York, NY
2015	Heys JG . Optical Imaging and Manipulation of Medial Entorhinal Cortex Grid Cells. Simons Collaboration on the Global Brain Annual Meeting, New York, NY
2015	Heys JG . Using Virtual Reality to Enable Cellular Resolution 2- Photon [Ca2+] Imaging of Medial Entorhinal Cortex Grid Cells. 6th Bernstein Sparks Workshop: Multi-modal closed-loop stimulation and virtual realities, Munich, Germany
2013	Heys JG . A cross-species comparison of intrinsic cellular mechanisms underlying spatial processing in medial entorhinal cortex. Neuroscience Seminar, University of Wisconsin–Milwaukee, Milwaukee, WI
2012	Heys JG . Intrinsic cellular electrophysiology and mechanisms underlying spatial processing in medial entorhinal cortex. Department of Neurobiology, Northwestern University, Evanston, IL
2012	Heys JG . Intrinsic cellular electrophysiology and mechanisms underlying spatial processing in medial entorhinal cortex. Janelia Research Campus, Ashburn, VA